

# POTENTIAL CHEMICAL IMPACTS OF CO<sub>2</sub> LEAKAGE ON UNDERGROUND SOURCE OF DRINKING WATER (USDWs) ASSESSED BY QUANTITATIVE RISK ANALYSIS

Case Study of the SWP Phase 3 Project: Farnsworth Unit CO2-EOR Demonstration

Ting Xiao, Brian McPherson, Feng Pan, Rich Esser

## Introduction

To evaluate potential risks to Underground Source's of Drinking Water (USDWs) due to CO<sub>2</sub> leakage, a response surface methodology (RSM) based on a generic TOUGHREACT geochemical model is developed to quantify isks due to CO<sub>2</sub> intrusion. The case study example is the Ogallala aquifer overlying the Farnsworth unit (FWU). The main objectives of this study are to: (1) understand how CO<sub>2</sub> leakage is likely to influence geochemical processes in aquifer sediments; (2) quantify the potential risks to the Ogallala groundwater aquifer associated with changes in groundwater chemistry due to CO<sub>2</sub> leakage from the FWU; and (3) identify water chemistry factors as markers for early detection criteria.

# Methodology

#### Simulation of cement hydration

A batch simulation of cement hydration was conducted for 100 years, to obtain the equilibrium wellbore cement composition in the field environment.

Primary chemical equations in this simulation:

- $(CaO)_3 \cdot A_2O_3 + 3CaSO_4 \cdot 2H_2O + 26H_2O \rightarrow (CaO)_6 \cdot Al_2O_3 \cdot (SO_3)_3$  $(CaO)_3 \cdot Al_2O_3 \cdot (SO_3)_3 + Al_2O_3 + Al_2O$
- $\begin{array}{l} (CaO)_{6}^{\circ} \cdot Al_{2}^{\circ} O_{3} \cdot (SO_{3})_{3}^{\circ} \cdot (H_{2}^{\circ} O)_{32} + 2(CaO)_{3}^{\circ} \cdot Al_{2}^{\circ} O_{3}^{\circ} + 22H_{2}^{\circ} O \rightarrow 3(CaO)_{4}^{\circ} \cdot Al_{2}^{\circ} O_{3}^{\circ} \cdot SO_{3}^{\circ} \cdot (H_{2}O)_{18} \\ (CaO)_{3}^{\circ} \cdot SiO_{2}^{\circ} + H_{2}O \rightarrow CSH^{\circ} + Ca(OH)_{2} \end{array}$
- $(CaO)_3 \cdot SiO_2 + H_2O \rightarrow CSH + Ca(OH)_2$  $(CaO)_2 \cdot SiO_2 + H_2O \rightarrow CSH + Ca(OH)_2$
- $(CaO)_4 \cdot Al_2 O_3 \cdot Fe_2 O_3 + 3CaSO_4 \cdot 2H_2 O + 21H_2 O \rightarrow (CaO)_6 \cdot Al_2 O_3 \cdot (SO_3)_3 \cdot (H_2 O)_{32} + Fe_2 O_3 \cdot (H_2 O)_3$

#### Simulation of $CO_2$ leakage flux through wellbores

A vertical 1-D simulation was conducted for 100 years, calibrated with the mineralogy result of the cement hydration model A dual-permeability continuum was developed to simulated fracture and matrix. The uncertainties of leakage flux were quantified by RSM.

| Property                   | Value                                | Property            | Value                                |  |
|----------------------------|--------------------------------------|---------------------|--------------------------------------|--|
| Rese rvo ir                |                                      | USDW aquifer        |                                      |  |
| Thickness                  | 30 m                                 | Thickness           | 100 m                                |  |
| Permeability               | $4.52 \times 10^{-14} m^2$           | Permeability        | 5.0×10 <sup>-13</sup> m <sup>2</sup> |  |
| Porosity                   | 0.1453                               | Porosity            | 0.30                                 |  |
| Rock density               | 2650 kg/m <sup>3</sup>               | Rock density        | 2600 kg/m <sup>3</sup>               |  |
| Salinity                   | 0.06                                 | Salinity            | 0.00035                              |  |
| Pressure                   | 300-350 bar                          |                     |                                      |  |
| CO <sub>2</sub> saturation | 0.1-0.9                              |                     |                                      |  |
| Cement                     |                                      | Fracture            |                                      |  |
| Permeability               | 5.0×10 <sup>-20</sup> m <sup>2</sup> | Permeability        | 1.0×10 <sup>-14</sup> m <sup>2</sup> |  |
| Porosity                   | 0.08                                 | Porosity            | 0.40                                 |  |
| Rock density               | 2400 kg/m <sup>3</sup>               | Rock density        | 2400 kg/m <sup>3</sup>               |  |
|                            |                                      | Fracture proportion | 0.01-0.1                             |  |

## Quantification of the risks with $CO_2$ leakage into the USDW

| Model setup: 2-D radial modal. | Table: Selection of the initial water chemistry |                           |                                      |                                 |
|--------------------------------|-------------------------------------------------|---------------------------|--------------------------------------|---------------------------------|
|                                | Name                                            | Concentrat io n<br>(mg/L) | Name                                 | Concentrat io n<br>(mg/L)       |
| Porosity = 0.3                 | H <sup>+</sup>                                  | pH 7.73                   | Cu <sup>2+</sup><br>Ph <sup>2+</sup> | 0.014<br>8 7 × 10 <sup>-4</sup> |
| 230 grid cells                 | H <sub>2</sub> AsO <sub>4</sub> <sup>-</sup>    | 0.0024 (as As)            | HSeO3                                | 0.003 (as Se)                   |
| CO2 Leaking                    | Cr(OH) <sub>2</sub> *                           | 0.002 (as Cr)             | Ag <sup>+</sup><br>Zn <sup>2+</sup>  | 3.61 × 10 <sup>-3</sup><br>0.45 |
|                                | Mn <sup>2+</sup>                                | 0.0077                    | TDS                                  | 570                             |

| Table: Independent parameters for simulations of CO <sub>2</sub> leaking into USDW aquifer |                                      |                   |                   |                   |              |  |  |  |  |
|--------------------------------------------------------------------------------------------|--------------------------------------|-------------------|-------------------|-------------------|--------------|--|--|--|--|
|                                                                                            | Parameter name                       | Low (-1)          | Mid (0)           | High (+1)         | Distribution |  |  |  |  |
|                                                                                            | Permeability: m <sup>2</sup>         | 10 <sup>-14</sup> | 10 <sup>-13</sup> | 10 <sup>-12</sup> | Lognormal    |  |  |  |  |
|                                                                                            | Leaking rate: kg/(s·m <sup>2</sup> ) | 10-21             | 10-19             | 10-17             | Lognormal    |  |  |  |  |
|                                                                                            | CEC: meq/100g                        | 1                 | 6.5               | 12                | Uniform      |  |  |  |  |
|                                                                                            | Absorbent SSA                        | 1                 | 50.5              | 100               | Uniform      |  |  |  |  |



#### Cement hydration

With the consumption of alite, belie, ferrite and aluminate, CSH, portlandite and ettringite precipitate as main products.  $\begin{bmatrix}
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & & \\
0 & &$ 



#### Figure: Composition changes during cement hydration

#### CO<sub>2</sub> leakage flux through wellbores

Results suggest a probability > 90% that any leakage would be between  $10^{-14} - 10^{-10}$ kg/(m<sup>2</sup>-year). This leakage rate is far less than previous estimates. We determined that these resulting small flux values are due to: (1) reactions between CO<sub>2</sub> and portlandite (Ca(OH)<sub>2</sub>) consume CO<sub>2</sub>; (2) porosity decreases due to precipitation of CaCO<sub>3</sub>, which further degrades the leakage pathway.



## Risk assessment of CO<sub>2</sub> leakage into the Ogallala USDW

The coefficient of determination ( $\mathbb{R}^2$ ) between simulation results and the responses of the regression ( $\mathbb{R}$  SM) model for most water indices of interest exceeded 0.9, suggesting that the resulting trained ROMs are effective for representing full-scale (non-ROM) simulation results.



#### Conclusions

- Probability > 90% that the leakage rate is between  $10^{-14} 10^{-10}$  kg/(m<sup>2</sup>·year). Simulated small CO, leakage rate is attributed to CO, reaction with portlandite (C
- Simulated small CO<sub>2</sub> leakage rate is attributed to CO<sub>2</sub> reaction with portlandite (Ca(OH)<sub>2</sub>) in the wellbore cement; this reaction consumes CO<sub>2</sub> and further decreases fracture porosity, degrading the CO<sub>2</sub> pathway.
- Within the range of simulated CO<sub>2</sub> leakage rates, trace metal concentrations could be twice as much as the initial value after 200 years, for the "worst case" scenario. However, all resulting simulated trace metal concentrations, even for the worst case scenario, are less than 1/5 of the MCL limit, suggesting that the risk of such contamination to the Ogallala groundwater quality is not significant.
- Water quality at 100, 500 and 1000 m away from the leakage pathway reflects the slight impact after 200 years, suggesting that the monitoring wells in place today will be capable of detecting significant leakage.

TDS and nitrate are suggested markers for early detection.

Department of Civil & Environmental Engineering; Energy & Geoscience Institute The University of Utah, Salt Lake City, Utah, 84112, USA e-mail: txiao@egi.utah.edu



## Acknowledgement

Energy & Geoscience Ir

Simulated water quality results

The U.S. Department of Energy and NETL, contract DE- FC26-05NT42591

